

Intrusion Detection and Prevention Systems for

Use on Remote Servers

Leon Anderson

2204060

BSc Hons Ethical Hacking, 2025

School of Design and Informatics

Abertay University

 i

Table of Contents

Contents

Table of Figures ... iv

Table of Tables .. vi

Acknowledgements ... vii

Abstract ... viii

Abbreviations, Symbols and Notation .. ix

Chapter 1 Introduction .. 1

1.1 Research aims and objectives ... 3

1.2 Chapter Overview .. 3

Chapter 2 Literature Review ... 5

2.1 Introduction .. 5

2.2 Core Principles of Linux Security ... 5

2.2.1 Principle of Least Privilege .. 5

2.2.2 Protection and Detection ... 6

2.2 Techniques Associated with Linux Security 7

2.2.1 Log analysis .. 7

2.2.3 Network Monitoring ... 8

2.2.4 Intrusion Detection Systems and Intrusion Prevention Systems

 ... 9

2.2.5 File Integrity Monitoring ... 10

Chapter 3 Methodology ... 11

3.1 Design Requirements of the Project .. 11

3.1.1 Must Haves ... 11

3.1.2 Could Haves ... 12

3.2 Development Methodologies ... 13

3.2.1 Agile Development Process .. 13

 ii

3.2.2 Waterfall Model ... 14

3.3 Planning and Design ... 15

3.3.1 Node Design ... 16

3.3.2 Command Design ... 17

3.4 Transferring Data Between Nodes and Command 18

3.4.1 Sockets ... 19

3.4.2 Secure Copy Protocol ... 19

3.4.3 Amazon Web Services S3 Buckets .. 22

3.5 SSH Monitoring ... 24

3.5.1 Log Analysis ... 25

3.6 File Monitoring ... 27

3.6.1 Stat ... 28

3.7 Alert Monitoring ... 30

3.8 Slack.. 31

3.8.1 Basic Bot ... 32

3.8.2 Cat API ... 33

3.9 Logs .. 34

3.10 Initial Setup .. 36

3.11 Configuration ... 38

3.12 Testing ... 40

3.12.1 SSH Testing .. 41

3.12.2 File Monitoring Testing .. 42

3.12.3 Command Node Testing ... 43

Chapter 4 Results ... 44

4.1 SSH Testing .. 44

4.2 File Monitoring Testing .. 44

4.3 Command Node Testing.. 45

 iii

Chapter 5 Discussion .. 47

5.1 Project Aims and Objectives .. 47

5.2 MoSCoW Analysis ... 49

5.3 Data Transfer Redundancy ... 50

5.4 Evaluating the Testing Methodology ... 51

5.5 Future Work ... 52

Chapter 6 Conclusion ... 54

List of References ... 55

Appendices ... 59

Appendix A- Complete Node Code ... 59

Appendix B- Complete Command Code ... 69

 iv

Table of Figures

Figure 1- Example of Defence in Depth With and Without IDPS 1

Figure 2- Modified Agile Software Development Process 14

Figure 3- Waterfall Development Process .. 15

Figure 4- Wireframe of IDS Structure .. 16

Figure 5- Initial Wireframe Design of Agent Nodes 17

Figure 6- Initial Wireframe Design of Command Node 18

Figure 7- Code to Create an Self Signed SSL Certification 19

Figure 8- Function Responsible for Command Connections 20

Figure 9- Flow Chart of the SCP File Transfer .. 21

Figure 10- /tmp Folder Monitoring Function .. 21

Figure 11- Flowchart of Data Transferring Using AWS S3 22

Figure 12- Agent Nodes Code For Uploading Files to AWS 23

Figure 13- AWS Download Function for Command Node 24

Figure 14- Flowchart of SSH Monitoring using Log Analysis 26

Figure 15- Code for SSH Monitoring Using Log Analysis 27

Figure 16- Flowchart Detailing How os.stat File Monitoring Would

Function .. 29

Figure 17- os.stat File Monitoring Code .. 30

Figure 18- Code Used to Monitor the /tmp Folder 31

Figure 19- Slack Alert Example ... 32

Figure 20- Slack Bot Code .. 33

Figure 21- Cat API Implementation ... 34

Figure 22- Logging Configuration .. 35

Figure 23- Example Log Code .. 36

Figure 24- Example of Info vs Error Flags in Logger 36

Figure 25- Function for Setting up Folders and Files 37

Figure 26- Example JSON File ... 39

Figure 27- FileCompare Integration with Config.json 40

Figure 28- Main Function For Agent Nodes With Config.json

Implementation ... 40

Figure 29- SSH Functional Testing Flowchart... 42

Figure 30- File and Folder Monitoring Testing Methods 43

 v

Figure 31- Logs Showing SSH Connection ... 44

Figure 32- Log Files Showing Evidence of Nano 45

Figure 33- Log Files Showing Evidence of Cat 45

Figure 34- Log File Showing Evidence of Successful File Detection and

Alerts ... 46

Figure 35- Image of Slack Alert Sent by Command 46

 vi

Table of Tables

Table 1- Description of the “Must Haves” From the Client 12

Table 2- Description of the “Could Haves” From the Client 13

Table 3- Table Detailing the Used OS.Stat Features 28

Table 4- Description of the “Must Haves” From the Client 49

Table 5- Description of the “Could Haves” From the Client 49

 vii

Acknowledgements

A special thank you to my supervisor Jaime O’Hare for supporting me

throughout the project and giving me guidance about how to do this

academic piece.

And a special thank you to my girlfriend Eden for supporting me and

unravelling the mystery of how to use “a” and “an”. It really shouldn’t have

taken me this long to learn this but thank you anyways.

 viii

Abstract

Intrusion detection and prevention systems (IDPS) are a well-known

example of technical security controls and are widely used by companies

to help protect systems inside their network. However, most companies

use IDPS developed by third-party companies, which can present an issue

when the software is unstable and becomes unavailable; this is where

custom-made intrusion detection systems can become critical for a

company's security. This project aims to research, develop, and evaluate

the effectiveness of a system capable of the detection and remediation of

threats on remote servers.

The intrusion detection system was developed using an agile development

methodology and focused on using log analysis to detect intrusions within

the system and on detecting remote SSH connections and file/folder

monitoring. The system created was a host-based system with a central

management system responsible for receiving alerts via AWS and SCP

protocols. These alerts were then parsed into a Slack bot to be sent to the

correct channels. The IDS was then tested and evaluated using manual

functional testing, which would reveal that the folder monitoring feature was

not functional, though the SSH and file monitoring were.

Finally, the system focused on detection and alerting, with automated

remediation not being implemented due to the design options such as

using log analysis making it not real time. Due to this, preventative actions

could not be taken.

 ix

Abbreviations, Symbols and Notation

IDS- Intrusion detection system

IDPS- Intrusion detection and prevention system

IPS- Intrusion prevention system

ML- Machine learning

LSM- Linux security module

PoLP- Principle of least privilege

AWS- Amazon Web Services

VM- Virtual Machine

FTP- File Transfer Protocol

 1

Chapter 1 Introduction

As cybercrime against organisations is becoming increasingly common

with more sophisticated payloads and techniques used, so is it that

intrusion detection and prevention systems play a critical role in the upkeep

of security in a company. To clarify, an Intrusion detection and prevention

system, or IDS/IDPS, is a piece of software or hardware that is specifically

designed to detect and subsequently stop malicious activity from occurring

on a host system or network. Historically, this has been done in many ways,

such as blocking the IP of potential attackers as a direct method or more

indirect methods, such as informing a network administrator or security

expert that an attack has occurred. (Fuchsberger, 2005)

Figure 1- Example of Defence in Depth With and Without IDPS

These systems are not meant to be the first line of defence in hindering

cybercrime; rather, the systems are a tool in what is known as the ‘defence

in depth’ approach to security. (Mosteiro-Sanchez et al., 2020) The

'defence in depth' approach to security entails multiple layers of security,

which are, in a sense, stacked on top of each other to make the breach of

 2

security more difficult for the attacker, should they break through the first

line of defence. This would stop them from going deeper, denying them

access to sensitive data. For example, one would have multiple locks on a

door so that if an intruder were to break one to gain access to the house,

the intruder would not be able to enter through the doorway without

breaking through each subsequent lock. With the multiple locks, in this

case, more attempts at getting through each lock only increase the

likelihood of being caught. In cyber security, this allows the system to have

more opportunities to catch the attackers through each layer of security.

An example of defence in depth can be seen in Figure 1 above.

For this project, the goal is to create a system that watches and learns the

remote server's regular routine and identifies when an operation is out of

the ordinary before working to resolve the issue. This technique is

commonly known as anomaly-based detection and works using systems,

such as machine learning, to determine what can be seen as normal

behaviour and what is not.

Cybercrime in the UK has remained an issue for medium to larger

businesses, with 70% of medium businesses and 74% of larger businesses

suffering a cyber attack, where 90% of attacks are phishing attempts.

(United Kingdom Government, 2024) This is when a criminal attempts to

extract credentials and information from the company's employees to gain

access to the company network through a legitimate account. Since the

attacker could access the company network, they can access remote

servers and information without setting off intrusion alarms by pretending

to be a legitimate user. Bypassing firewall rules and other technical

controls. This is why it is vital for companies to use intrusion detection and

prevention systems.

Although commercial IDPS systems are available to companies, there are

risks to using premade solutions. A significant challenge with current

commercial IDPS solutions is their lack of customizability, stability issues,

and potential for unnecessary costs. An example of this would be the

 3

CrowdStrike Falcon Platform. CrowdStrike is an American cyber security

solutions company that offers multiple tiers of security for a monthly

subscription. It is estimated that 45% of Fortune 100 companies rely on

CrowdStrike. (George, 2024). On July 19th 2024, an unstable update was

released for CrowdStrike's IDS solution. The update caused a technical

malfunction across all systems that had the software installed. Causing

widespread outages worldwide. Microsoft estimates that 8.5 million

Windows devices were affected (Tidy, 2024), and the damages caused by

this outage have an estimated cost of between 4-6 billion USD. (George,

2024). This problem with commercial IDPS is that far too little attention has

been paid to how IDPS can be made more stable, customisable and cost

efficient. One solution for this would be for a company to produce their own

custom IDPS.

1.1 Research aims and objectives

This project aims to research, develop, and evaluate the effectiveness of a

system capable of the detection and remediation of threats on remote

servers. Three key objectives have been identified for the project's aim.

• The first objective is that a method of detecting anomalies from

observing the server will be researched and implemented.

• The second is that appropriate and automated remediation and

alerts for detected threats will be implemented, allowing the system

to run without user interaction.

• The third objective will be to evaluate the effectiveness and

accuracy of the project, reporting on how successful the project was.

1.2 Chapter Overview

This paper will be split into five sections, each detailing a stage in the

research, development, and evaluation of an IDPS system. The first

 4

section of the paper will be a literature review. This section will research

the core principles of Linux security and techniques associated with Linux

security, as well as methods, existing tools, and past research. The paper

will then move on to the methodology of the project, where a MoSCoW

analysis will be done to further identify objectives, and then the

development and testing of the IDS will take place. Following this, a section

detailing the results from testing will be completed, and then a section

discussing the project will be done. This section will be used to evaluate

what went well throughout the project and what did not. Detailing possible

remediations for the issues that occurred during the project. Finally, there

will be a conclusion determining if the project was a success and recapping

the processes taken throughout the project.

 5

Chapter 2 Literature Review

2.1 Introduction

This chapter of this project aims to provide a comprehensive literature

review of the current state of security monitoring of security monitoring on

the Linux operating system. The chapter will be split into two sections, with

each focusing on its own corner of security monitoring on Linux. The two

sections of this literature review will be the Core Principles of Linux Security

and Techniques associated with Linux Security. These two sections will

help establish the project's baseline and support the IDPS development.

2.2 Core Principles of Linux Security

When thinking about cyber security, some common principles are used by

security teams worldwide. This literature review section aims to explain and

discuss some of these core principles and how they can be applied to the

Linux operating system to enhance its security.

2.2.1 Principle of Least Privilege

The Principle of Least Privilege (PoLP) is a security practice that entails

that all users be granted the minimum number of permissions possible in

order for them to complete their work. (Jero et al., 2021). If a user has a

security breach on their account, the damages caused by this would be

minimised as the attacker would have access to limited resources.

PoLP is one of the most common methods used in cyber security and

spans multiple operating systems; in Ubuntu OS, when the operating

system is first installed, it comes with three account types: Root,

Administrator and Basic. (Motiee, Hawkey and Beznosov, 2010). The

administrator account is the most used account by users. The

Administrator account allows users to perform tasks such as changing the

time and using the operating system at an upper level; however, it will not

 6

allow the user to perform system tasks or Root tasks without a root account

through the sudo command. (Kenlon, 2022).

On Windows OS, The PoLP is much easier to enforce, thanks to Active

Directory. The active directory is a feature in Windows that allows

administrators to create accounts and control what each account can do

and see. The authors (Desmond et al., 2008) describe an active directory

as "a central repository that can be globally distributed" " which is true as

the active directory is easy to manage and deploy enterprise-wide for

system administrators. However, ease of use comes at a cost. The lack of

security.

In an article published by Microsoft, the author discusses how PoLP is often

incorrectly enforced and that large groups of users have “broad and deep“

privileges. (Foulds, 2023). The article discusses how administrators often

take the easiest road when creating new user accounts instead of

assigning a new group of users to their own groups with their own PoLP

enforcement. The administrators often assign them to an existing group

with privileges above what they must complete for their jobs. This highlights

an issue with the PoLP in which administrators often incorrectly implement

it and can be a low-hanging fruit in security.

2.2.2 Protection and Detection

The Detection and Protection principle states that half of security is

detection and half of security is protection. Detection is the idea that when

a cyber attack occurs, the victim can know it is happening. Meanwhile,

protection is the idea that when an attack occurs, appropriate steps have

been taken beforehand to minimise the damage. The authors Sewak et al

discuss this in their paper on Deep reinforcement learning in advanced

cyber security threat detection and protection. (Sewak, Sahay and

Rathore, 2023) During the paper, the authors discuss how machine

learning can be used to help improve the detection of cyber attacks. They

propose that deep reinforcement learning can be used to improve the

 7

detection rate for cyber attacks and implement one such model into an

IDPS system. During their research, they discovered that when the

detection rate of the IDPS went up due to ML, the protection rate also went

up. Highlighting the protection and detection principle well.

2.2 Techniques Associated with Linux Security

Many techniques are commonly used to monitor Linux operating systems.

This section of the literature review aims to discuss some of the more

popular and common techniques.

2.2.1 Log analysis

Logs are one of the easiest to implement features when adding security to

a software product. Logs are useful for many things throughout the

development cycle and production of a product and can be simply added

using simple print commands in code; however, although this may help

within the development cycle of software with debugging, this method of

logging is volatile and disappears when the software is finished executing.

Due to this, developers realised early on that software needs to be logged

into files for cold storage, as the authors Buckley and Siewiorek discussed

in their paper in 1995. (Buckley and Siewiorek, 1995) The authors discuss

how log analysis can be used for fault management and trend analysis;.

However, this paper focuses on using log analysis for system monitoring

rather than security monitoring, showing the capabilities of log analysis.

The Linux system was released four years before this paper, and an in-

built in-depth logging system was implemented into it. The "/var/log"

directory in the kernel is widely used by the system and by developers to

log events that have taken place on the OS. This is a commonly monitored

folder for security and is used in many forensic systems, as discussed by

Dusane and Sujantha (2021). In the paper, the authors discuss how the

/var/log folder contains system logs (syslog), Daemon logs (daemon.log),

and authorisation logs (auth.log). The author discusses different methods

 8

of log analysis, such as using historical data and comparing logs, but talks

about the challenges associated with this method of forensic analysis. They

scrutinise this analysis method as log analysis can take a long time to

complete, and automation tools can have difficulties analysing these files

due to logging not having an industry standard. This scrutiny of log

analysis is an opinion shared by the authors (Svacina et al., 2020), who

further dissect the issues of log analysis. Their paper discusses how log

analysis is a very effective strategy for security monitoring; however, the

authors describe it as a "post mortem" method of analysis. Which can only

be done after an attack has taken place. This highlights a key issue with

log analysis for use in an IDPS: it cannot be a guaranteed way of catching

attackers in the process of an attack.

2.2.3 Network Monitoring

Networking in Linux has always been highly accessible, with the openness

of the Linux kernel, allowing system administrators and security

professionals to keep a close eye on network traffic flowing in and out of

the device. (Sánchez, Alvarado-Nava and Martínez, 2012), This has

become a key staple in the cyber security industry as most researchers

consider network traffic to be a critical part of security monitoring.

In a paper that focuses on integrating IDS with network monitoring, the

authors Kumar, Angral and Sharma (2014) support this theory by

describing how network monitoring is a vital part of real time detection of

threats. The authors describe network monitoring use in IDS as the ability

to identify malicious packets and drop it from the network. Umar, Anral and

Sharma discuss in their paper why this is needed for IDS, highlighting the

aforementioned; however, they don't go into detail about how network

monitoring would function. However, this was discussed in 2015 by the

researchers Svoboda, Ghafir and Prenosil.

The authors (Svoboda, Ghafir and Prenosil, 2015) discuss in their paper

how different methods of network monitoring can be used. In Svoboda's

 9

paper, they discuss how five different approaches to security monitoring

can be used and talk about the advantages and disadvantages of each

approach; the authors discuss methods such as traffic duplication. Packet

capture. Deep packet Inspection and Flow Observation. At the end of the

paper, the authors highlight how each method has its pros and cons;

however, no method is better than others—highlighting to the user the

importance of choosing a method that is right for their software.

2.2.4 Intrusion Detection Systems and Intrusion Prevention Systems

Intrusion detection systems and intrusion prevention systems (IDS, IPS)

are a critical part of any security monitoring system and historically had

fantastic integration with the Linux operating system due to the open-

source nature of Linux, allowing the IDS to have a deeper integration with

the operating system. (Wang and Chang, 2022)

Intrusion detection systems have a wide range of capabilities and uses

depending on the feature set needed for security. One such feature that is

widely used is anomaly-based detection. As explored by the authors

Depren et al., (2005). The authors explore using machine learning inside

of an IDS for anomaly detection. The authors use decision trees as a

classifier to detect the type of attacks on the system. When testing the

data, the researchers discovered that their anomaly-based detection

method had a 98.96% detection rate and a false positive rate of 0.2%. The

author's research shows how successful machine learning can be when

integrated into an IDS system and highlights how IDS systems can

successfully stop attacks.

A key principle of IDS systems is where the IDS will be based; for network

security, a network-based IDS (NIDS) can be used, and for host security,

a host-based IDS (HIDS) can be used. The concept of this is explored

further in a paper by Wang and Zhang, (2012) who propose to combine

both methods for a hybrid IDS. The authors discuss how both HIDS have

issues with taking up system resources on each node and only having the

 10

capability to detect issues on themselves. The authors also discuss the

downsides of NIDS and how it is limited to the network and can't detect

intruders if they are only one computer. The author also highlights the

limitations of NIDS with encryption, discussing how the IDS can be broken

by using this feature. The authors highlight in their study that a combination

of the two host types should be used rather than one or the other.

2.2.5 File Integrity Monitoring

File integrity monitoring (FIM) is a critical part of the Linux system and

ensures that files are not modified or changed. This can be useful To the

Linux operating system itself as if a critical file such as a boot configuration

file was corrupted, then the operating system could have issues booting.

However, this issue could be corrected through the use of FIM. (Loscocco

et al., 2007) Although this technology is used to verify files it can also be

used for security monitoring of files, as explored by Kim and Spafford,

(1994). This paper is an early example of how file integrity monitoring has

been used for security since the 1990s and introduces the idea that FIM

can be used as a "tripwire", as described by the author. The authors

discuss how this technology can be used alongside other monitoring

methods, such as log analysis, and how this can alert administrators when

files are modified or deleted. This research is developed by the authors

(Al-Muntaser, Mohamed and Tuama, 2023) In a paper where the writers

discuss how FIM can be used in a real-time IDS to detect changes in critical

files. The researchers tested the FIM with 100 simulated scenarios where

files were modified, and the FIM had high accuracy in the tests; however,

it faced an issue where there were a small amount of false positives, This

highlights an issue with file integrity monitoring in security systems, Some

files that are being monitored can be modified by genuine users or systems

rather than malicious attackers however FIM systems would not be able to

detect the difference.

 11

Chapter 3 Methodology

This chapter of the paper will focus on how the aims and objectives of the

project were met during the development of the Intrusion Detection and

Prevention System. (IDPS). This chapter will be split into sections, each

showing a step taken during the development. Each section will consist of

subsections detailing different approaches taken during the development

and the reasons behind each design decision.

3.1 Design Requirements of the Project

Before the project's development began, the project's requirements

needed to be sorted out. Through talks with the clients the requirements of

the project were laid out. After this, a MoSCoW analysis was completed on

the requirements, and they were sorted into two sections: "must haves"

and "could haves". Must halves are best described as something the client

requires for the project to succeed. Meanwhile, “could haves” are features

and functionalities the client would like to have but are not deemed

essential to the project's success.

3.1.1 Must Haves

Discussions with the client occurred, and the project needs were laid out.

The project aimed to develop an Intrusion Detection System capable of

detecting threats on remote servers. After this further, smaller requirements

were set out. The IDS would be running on Ubuntu Linux, so it must be

compatible with Ubuntu systems. This would be an essential requirement

as software incompatibility would leave each agent vulnerable to cyber

attacks. Another requirement set out by the client was that the system

would have to have an agent per virtual machine (VM). This requirement

would shape the development of the IDS into a HIDS-based system. The

IDS system also would have two main detection requirements to be

classified as a success: The ability to detect SSH and remote connections

and the ability to detect file modification.

 12

Table 1- Description of the “Must Haves” From the Client

Must Haves Description

Develop an Intrusion

Detection System

Develop a functional Intrusion Detection

system.

Compatibility with Ubuntu

Linux

Allow the IDS to be fully compatible with the

Ubuntu operating system.

Host Based System IDS must be a host-based intrusion

detection system with an agent per virtual

machine.

Network Authentication

Detection

Agents must be able to detect remote

connections to the machine.

File modification Detection Agents must be able to detect when files

and folders are modified.

3.1.2 Could Haves

Discussions with the client took place and the “could haves” of the project

were laid out. The project aimed to develop an Intrusion Detection System

capable of detecting threats on remote servers. After this further, smaller

“could haves” were set out. These goals are not required for the project to

be deemed a success but would rather serve as a nice to have for the

clients. The clients asked for a way for the bot alerts to be handled and

decided that they would like to use a Slack bot for the project; however, it

would be okay if other methods of alerts were used. The client also wanted

the IDS to use as few ports as possible to avoid long and manual

deployment times. However, stated that they could open specific ports if

required for the project. The clients stated they would like the IDS system

to have a central management system. This would be where all the alerts

were sent to and saved. The clients desired an easy deployment process

as they wanted to be able to deploy the software as simply as possible

through the use of simple scripts. So, the IDS would require minimal setup.

 13

Table 2- Description of the “Could Haves” From the Client

Could Haves Description

Simple Alerts A Slack alert bot that could alert the security

team of any intrusions.

Simple Deployment The ability to deploy the software through the

use of simple scripts

Minimum Ports The client desires the IDS to use as few ports as

possible for the system to function.

Central

Management

System

A central “command” system that could be used

to monitor the IDS agents and handle alerts.

3.2 Development Methodologies

When developing large, complex software, development teams often use

development methodologies to help guide product development. (Despa,

2014). Although there are a lot of development methodologies, it was

decided that the Agile Software Development cycle would be used for this

project. Although Agile was chosen for this project, the original plan was to

use the Waterfall Methodology; however, due to the project's timeframes

and changing goals, it was decided that the adaptability of the Agile

framework was more in line with the project's goals.

3.2.1 Agile Development Process

The Agile Development Process is a software development methodology

popular amongst developers and product managers. The development

process is more flexible than other methodologies, highlighting adaptability

and working software over documentation and planning. This methodology

fits this project well, as different features were modified and changed

throughout the development cycle.

The Agile software development cycle follows a loop of meetings, planning,

designing, development, testing and evaluation; however, for this project,

the meetings with the client were stepped back, so this methodology was

 14

modified, as highlighted in Figure 2 below. This methodology will be used

throughout the project to help develop every required feature.

Figure 2- Modified Agile Software Development Process

3.2.2 Waterfall Model

The Waterfall Model is another popular development methodology used by

software developers. The model focuses on following a planned sequential

sequence of steps when developing software and requires a lot of planning

in the early stages of the development process. However, the waterfall

model was not deemed viable for this project due to the volatility of the

project's requirements. An example of the Waterfall Model can be seen

below in Figure 3.

 15

Figure 3- Waterfall Development Process

3.3 Planning and Design

When following the Agile development process, the second step of the

cycle is planning; due to this, the initial wireframe for how the IDS would

function was drawn up. This wireframe shows how the IDS would be

structured, as shown in Figure 4 below. This diagram shows the initial idea

of how the IDS would be structured. Each node would be placed onto an

agent, and all would share one “command” server, which a security team

would control. This approach of a one-to-many design would allow ease of

scalability by introducing modularity into the system. Introducing new

command servers could allow administrators in different offices to have

their own clusters.

 16

Figure 4- Wireframe of IDS Structure

3.3.1 Node Design

When designing the IDS, one of the “must haves" of the project was for the

IDS to be a HIDS-based system. This would be accomplished through the

use of “Nodes”, with each node being an agent that would be on the

monitored system. Before starting development on the nodes, an initial

wireframe design of how the node would function would be drawn; this

wireframe would attempt to incorporate all of the project's requirements as

well as the optional tasks of the project to help shape the project's design.

The wireframe would further detail a potential way that each feature would

be implemented. The node wireframe can be seen below in Figure 5.

 17

Figure 5- Initial Wireframe Design of Agent Nodes

3.3.2 Command Design

When designing the IDS system, it was decided that a "command" node

would be used; this node would be responsible for controlling nodes and

act as a central node to agent nodes that would send alerts when a rule

violation occurred. Using a Command node would benefit the project by

allowing the central management of nodes to aid security teams. Before

starting active development on the command node, a wireframe of the

node was made. This would show the structure of the command node and

its features, such as how it would handle alerts and node communication.

The wireframe design of the command node can be seen below in Figure

6.

 18

Figure 6- Initial Wireframe Design of Command Node

3.4 Transferring Data Between Nodes and Command

When monitoring each node, the command and nodes must be able to

communicate with each other. This is required as when nodes detect a rule

violation, the alert will be sent to the command for a security team to see.

When deciding on a method of communication, there are multiple things to

consider that influence what communication protocol will be used. Race

conditions, system resources, security, and scalability can be strict barriers

that different protocols face and should be considered when choosing one.

The first step in creating the communication method between the node and

command was to decide what protocols and methods would be used to

develop the code. When analysing the downsides and upsides of each

method, three methods of communication were implemented: Sockets,

Secure Copy Protocol and AWS. However, it was decided that sockets

would be scrapped after prototyping due to security concerns.

 19

3.4.1 Sockets

When deciding on methods to use for communication between nodes,

sockets were the first method prototyped. Sockets were chosen for their

wide compatibility with different machines, and because sockets are part

of the Python standard library, they would require little setup. When

designing the socket prototype for the IDS, The first step was to obtain a

form of SSL certification; This was a vital part of the communication as

without SSL, the information would not be encrypted and would be

vulnerable to man-in-the-middle attacks. (Bhushan, Sahoo and Rai, 2017).

For prototyping, a self-signed certificate was created using the code

displayed below in Figure 7.

Figure 7- Code to Create an Self Signed SSL Certification

When deploying code into production, it is important not to use self-signed

certifications but to use certification from certificate authorities. This is

because certifications verify the legitimacy of web servers, and when using

self-signed certifications, there is no way of knowing if the certification

being received is genuine or not. (Radif, 2018) This was one of the main

security concerns when prototyping sockets, so this communication

method was not chosen for further development.

3.4.2 Secure Copy Protocol

The second prototype method was using a secure copy protocol (SCP).

This method has a lot of positives, such as not requiring ports to be opened

up, unlike sockets. SCP relies on the SSH protocol, so it only uses port 22.

This is a benefit as this was one of the “could haves” that the client wanted

to have and would reduce the setup time of the IDS.

 20

Figure 8- Function Responsible for Command Connections

As shown above, in Figure 8, is the code that was developed for sending

files to the command node. The code starts off by creating a file and naming

it “NINJAEYE-{IP}-{TIME}-{FILEREASON}”. This was done so that

information could easily be extracted from the file name when the

command node receives the file. After the file is made, the data received

by monitoring functions is written into the file and then sent to the command

server "/tmp” folder. A flowchart showing this progress can be seen below

in Figure 9.

 21

Figure 9- Flow Chart of the SCP File Transfer

When the file is successfully transferred to the Command node, a method

of monitoring the /tmp folder is created using the following code shown in

Figure 10.

Figure 10- /tmp Folder Monitoring Function

The code above is a basic form of alert monitoring on the command node;

the code starts by monitoring files inside the "/tmp” folder, reading each

filename and checking if the filename starts with “NINJAEYE”. If that

filename is present, then the file Is moved to the alerts folder using the

shutil.move command, and an alert is printed.

 22

3.4.3 Amazon Web Services S3 Buckets

The third method of transferring data between the agent nodes and the

command server that was chosen was the use of Amazon web services

(AWS) S3 Buckets. The AWS S3 cloud service provides simple storage

solutions and allows developers to use Amazon's storage servers. This can

allow developers to use the service as middleware, allowing them to use

the service to transfer data between two devices. This can benefit

developers by saving system resources and allowing developers to easily

transfer data across the internet rather than just the local network. Another

benefit of using AWS is the ability to scale and use elasticity. Although

cloud services can benefit companies, they also come with trade offs, such

as operational costs and the requirement for additional ports to be opened

up on each machine, going against the could haves objectives in the

MoSCoW analysis.

When prototyping how AWS would be integrated into the IDS, the first

stage of the process was to make a flow chart detailing how the process

would function. The flowchart can be seen in the figure below.

Figure 11- Flowchart of Data Transferring Using AWS S3

 23

The abovementioned method is a simple method by which data can be

transferred between two modes. The flowchart highlights how the data will

be removed from the S3 bucket once downloaded; however, this is a

feature that the client could remove if they wished. Once the flowchart was

done, the development of the code began. The first iteration of the code for

the agent node that was produced can be seen below in Figure 12.

Figure 12- Agent Nodes Code For Uploading Files to AWS

The code above shows the function written for the agent nodes that allows

them to upload files to the S3 buckets; the code starts by initialising the S3

client and then attempts to upload the file, which is passed into the function

by "commandConnection". Once completed, the code prints a message

telling the user that the code has uploaded the file; however, if there is an

issue, the code will return out of the function and display an error message.

After this code was developed, the code for the command function was

developed. The code can be seen below in Figure 13.

 24

Figure 13- AWS Download Function for Command Node

3.5 SSH Monitoring

Having shown how different methods of data transfer can occur, one

common theme that all the methods faced was the use of the “data” and

“filereason” variables. These variables are created using the monitoring

functions, Which detect when a rule violation occurs and send this

information to the “commandConnection” function. One of the “must haves”

of the clients was for the IDS to have an SSH monitoring system; this

system would check to ensure that no SSH connections occur and report

if one is active. Although there are multiple ways to accomplish this, such

 25

as process monitoring or network monitoring the method investigated for

this project was the use of Log Analysis based on the research done within

the literature review.

3.5.1 Log Analysis

Following Buckleys and Siewioreks research, the use of log analysis was

going to be implemented. Linux monitors when ssh connections happen

using the “auth.log” file. The file contains all attempts at authentication

connections on the system; this includes failed connections and successful

ones and is not limited to SSH. The auth.log files also contain information

on all authentication methods on the system, including connections from

other services and the use of the sudo command. (Isaiah, 2025). This

means that the code produced for SSH monitoring could be easily modified

for other monitoring methods, such as sudo or FTP.

The first step when implementing log analysis was to design a generic

flowchart of how the code would function. The flowchart would help guide

the development of the log analysis feature. The flowchart can be seen

below in Figure 14.

 26

Figure 14- Flowchart of SSH Monitoring using Log Analysis

When planning how the log analysis would function, it was planned that the

function would gather two copies of the ssh connections from the auth.log

files. The first copy would be a control file that would serve as the baseline,

and the second file would be compared to the baseline every 30 seconds.

If a change were detected between the two files, then this information

would be sent to the alert function to be sent to the command. The code

developed for this can be seen in Figure 15 below.

 27

Figure 15- Code for SSH Monitoring Using Log Analysis

The code above follows the flowchart design made in Figure 14. The code

was developed to be made modular at a date and easily modified for other

monitoring purposes. This could be done by changing the “grep” command

to look for a different feature instead of “sshd”.

3.6 File Monitoring

One of the project's requirements was to allow the IDS to monitor files and

folders for change or access. The system would require the ability to

monitor when a file or folder changes; this can be from things such as the

addition or removal of files, modification to the contents of the file or if a

system or person has accessed the file.

 28

Although there are many commercial tools available for this function, many

of these tools cost money and are ill-suited for the project, and could

require the opening of ports or other configurations which would go against

the project's aims and objectives. When designing how this feature would

function, the first stage, as detailed by the agile development process,

would be to plan and design the feature, exploring different ways to

implement the feature. When planning out the feature, one main way of

completing this goal was considered, the python “OS.Stat” function.

Although this method would face its own benefits and downsides, which

are detailed below.

3.6.1 Stat

The OS.Stat function is a part of the Python standard library (Lundh, 2001)

and provides information about a file or folder when used; the command

returns an object which contains information about the file. The two main

items that were used for this stage in the project, however, were the

"st_atime” and the st_mtime" These details can be seen below in Table 3.

Table 3- Table Detailing the Used OS.Stat Features

Feature Description

st_atime Details the last time a user or

system accessed a file or folder.

st_mtime Details are provided on the last

time that the file was modified.

This includes whether files were

modified inside a folder.

When planning how the os.stat feature would be implemented, a flowchart

was made detailing how the code would be developed. The flowchart can

be seen below in Figure 16.

 29

Figure 16- Flowchart Detailing How os.stat File Monitoring Would Function

The method chosen for the file monitoring using os.stat was similar to the

SSH Log analysis method, where the code would function by comparing

two files and checking if there was a difference. The full code for this can

be seen below in Figure 17.

 30

Figure 17- os.stat File Monitoring Code

3.7 Alert Monitoring

When Alerts are sent to the command server using commandConnection,

the alerts are first stored inside the /tmp folder. The tmp folder is a folder

used in Linux to store temporary files used by the program and is wiped at

boot time. (Sharma, 2024). Due to this, a way to monitor the /tmp folder

and move files from it into a permanent folder is required.

 31

When designing the nodes, a method for identifying what an alert file is

was created using file names. Each Alert file starts with “NINJAEYE”, This

identifier would allow the command node to know through string

concatenation what files it would be required to move and what files it could

ignore. This method was chosen for its ease of implementation and

efficiency, as the command node would not be required to read the file's

contents but instead just read the file's name. The code that was developed

for this can be seen below in Figure 18.

Figure 18- Code Used to Monitor the /tmp Folder

3.8 Slack

When discussing with the client how they would like to receive alerts, the

client highlighted how they would like a simple method to receive them.

When discussing further through the MoSCoW analysis of the project, it

 32

was identified that a Slack bot would best be used to deliver the alerts.

When designing the Slack bot, the bot would need to overcome issues

identified by the client, such as alert fatigue and ease of setup.

3.8.1 Basic Bot

Development teams widely use Slack bots as a method of alert monitoring.

Due to this, Slack has developed a wide range of API features that help

design bots, and many community Python libraries have been created to

make APIs more accessible. When designing the Slack bot, it was decided

that it would use the slack_sdk to aid development. The official Slack

development team develops the SDK so the library has greater integration

with the API and helps ease the Slack bot's implementation.

When designing how the Slack bot would function, the first stage was

deciding its features. It was decided that the Slack bot would feature a

simple alert with the information and a picture. An image of what this looked

like can be seen below in Figure 19.

Figure 19- Slack Alert Example

When implementing the Slack bot, it was decided to keep it simple. This

was so that if the client wanted to modify the bot to implement it into an

existing bot, they were able to. The code for the basic bot can be seen

below in Figure 20.

 33

Figure 20- Slack Bot Code

The code for the bot is simple and starts off by authenticating using the

“SLACK_BOT_TOKEN”. The code then starts a new client using the

credentials and creates the format for the message using the “blocks” UI

builder included in the Slack SDK. The code then posts the message using

the “chat_postMessage” function and throws an error message if any

issues are detected.

3.8.2 Cat API

During the conversation with the client, the client mentioned that they would

mute the bot's channel if the bot were too "spammy". This highlights a

common issue in the cyber security and medicine industry. Alert fatigue.

Alert fatigue is when a person hears so many alerts that the person starts

not paying attention to the alerts anymore. (Ban et al., 2021; Wang et al.,

2024) This can be caused by bots sending too many messages alerts, or

by a high rate of false positives provided by IDS. Although there are many

ways to limit alert fatigue, the one chosen for use in this project was for the

use of cat pictures.

 34

Research completed by Nittono et al. (2012) revealed that looking at cute

pictures of animals before completing focused tasks helped improve

mental performance by 15%. This research supports the theory that the

use of cat pictures can assist in reducing alert fatigue. Moreover, it helped

shape the design of the Slack bot. One tool that can provide cat pictures is

the use of the Cat API. The Cat API is an API that provides over 60k

pictures of cats for free and would be implemented into the IDS using the

code below in Figure 21.

Figure 21- Cat API Implementation

The code shown above highlights how the Cat API was implemented. The

code starts by fetching the API Key URL from an env file and then uses

Python's request library to request the URL. Once the request is received,

the code will return the URL, which will be passed into the “send_message”

function. Providing the cat picture. This method is effective because no files

are downloaded and stored on the machine, which saves resources. As

well as no ports need to be opened besides port 80 which keeps the port

numbers minimised. Supporting the objectives of the project.

3.9 Logs

When building IDS systems, a form of logging must be implemented for

both the agent and command nodes. Logs can help provide replays of

 35

events that can assist SOC analysts in analysing rule violations. Logs can

also help ensure that the integrity of software stays intact and provide a

detailed report of how the software performs and if there are any issues.

(Kent and Souppaya, 2006). Although there are many standards of logs

and implementation methods, the method chosen for this project was to

use the “logging" Python library. The logging library is a part of Python's

standard library, which allows it to be easily implemented into the code,

assisting in the ease of maintainability of the code.

When designing how the logs would function, the first step is to set up how

the logs will be configured. This step is important as it is where features

such as log locations and the structure of the logs are located. The code

that was designed for this can be seen below in Figure 22.

Figure 22- Logging Configuration

The code above is a modified version of code found in the blog post made

by Verma, (2023). The logging code configures the format of the log

messages to include the timestamps and the log level. The code also

introduces rotating log files, which assists in ease of use by creating new

 36

log files and archiving old files when the file reaches 10MB in size. After

the configuration of the files is added to both agent and command nodes,

the next stage is to implement the logging throughout the code. This can

be done by using the code shown in Figure 23.

Figure 23- Example Log Code

When implementing the logger, it is important that the code is placed in

strategic positions in the code and that the logs highlight what is happening

in the code. This helps highlight what is happening throughout the code

executions and debug errors. When deciding what type of logger to use, it

is important to use the correct flag associated with the message. The code

highlighted below in Figure 24 shows how the info flag is used to portray

information on what is happening in the code, whereas the error flag is

used to portray if an error has occurred. The use of the three flags

throughout the code: warning, error and info. It can support highlighting

critical information in the logs such as software failure and assist in log

analysis of the IDS.

Figure 24- Example of Info vs Error Flags in Logger

3.10 Initial Setup

Before the code can be deployed, a method of setting up files and folders

must be developed. Premade folders where files and materials could be

 37

stored would assist in maintaining the software and would allow

administrators to easily find files and logs. When deciding where the files

would be stored and what folders to use, it was decided that they would all

be stored underneath the "/etc." directory. The /etc directory is a common

directory developers use to store files that do not fit under other categories.

(Academy, 2023). The files that are included in the directory typically lean

towards configuration files; however, log files may also be stored. This

would allow a centralised location for all the project files, including logs and

alerts. The code that was developed for this can be seen below in Figure

25.

Figure 25- Function for Setting up Folders and Files

The code shown above shows how the folder and file setup were created.

The code takes folders and files names stored in the arrays and iterates

through them one at a time using os.makedirs to create the folders and

files. If the files already exist, the code will pass over them and not attempt

to override them. Once this is completed, the function will end and move

 38

on to the next stage of the code; however, if the function has an error at

any stage in the code, the code will exit and print to the terminal an error.

3.11 Configuration

When designing the file monitoring system, the function would only monitor

one file or folder that was hard coded. That issue represented a problem

in which the code would be complex to modify. Going against the project's

aims. A solution that was decided upon was to make use of a configuration

file. Developers use configuration files to allow simple customizability in the

code without modifying the main code itself. This can be accomplished in

many ways, such as the use of XML, YAML, INI or JSON. (Kenlon, 2021).

Although each file type provides its own advantages and disadvantages, it

was decided that for the project, the use of JSON was going to be

implemented into the project. This was due to JSON's portability, ease of

use, and implementation within the Python standard library.

When developing how this JSON would be implemented into the code, the

first stage of the design process was deciding what would be included in

the JSON file. It was decided that two main parts would be implemented

into it. These would be the file paths to be monitored and the time interval

between the functions running. This allows the code to be customised

based on performance with a lower time being run on a faster machine.

Furthermore, the ability to have the code easily scaled with the ability to

add more files for the file monitoring function. These two features allow end

users to easily customise the code based on their needs for the project.

The full JSON can be seen below in Figure 26.

 39

Figure 26- Example JSON File

When modifying the file monitoring function to integrate the JSON, a new

method of calling the function was required. The first stage of prototyping

a new method was to make a flowchart detailing possible methods that

could be used to complete this. The flowchart can be seen below in Figure

27. After designing an outline of how the config file would be integrated,

the code was developed, which can be seen below in Figure 28.

 40

Figure 27- FileCompare Integration with Config.json

Figure 28- Main Function For Agent Nodes With Config.json Implementation

3.12 Testing

Testing is completed throughout the code development when following the

Agile development methodology. This method of continuous testing allows

the code to be evaluated often and helps create higher-quality code to be

used; however, throughout the project's development, a central testing

method is required to help keep tests repeatable. For this project the use

of manual testing was used to complete this.

 41

Manual testing has the benefit of being time efficient on smaller projects

such as this and can allow customizability to the testing procedures. The

downside of manual testing, however, is that the testing methods can

become more time-restrictive throughout the code development as the

project's complexity increases. The requirements for this method were

focused on functional testing. The theory is that the software should be

tested to see if it can complete specified requirements. (Beizer, 1995)

3.12.1 SSH Testing

The requirement for the SSH testing was that the software would be able

to detect if an SSH connection had occurred. This was completed by

connecting to the Agent nodes VM from an external SSH connection and

testing if the SSH could be detected. A flowchart detailing this can be seen

below in Figure 29.

 42

Figure 29- SSH Functional Testing Flowchart

3.12.2 File Monitoring Testing

The requirement for the file monitoring feature to be considered a success

was that the software would be able to detect if a folder/file had been

accessed as well as if a folder/file had been modified. This would be tested

by accessing a file using the nano command, modifying it, and reading the

contents of a file using the cat commands. Both of these methods were

chosen as the tools cat and nano come preinstalled on Ubuntu Linux.

(Ubuntu, no date) The operating system the IDS is tailored towards. A

flowchart of the testing method for file/folder monitoring can be seen below

in Figure 30.

 43

Figure 30- File and Folder Monitoring Testing Methods

3.12.3 Command Node Testing

When the command node was tested, the requirements were to

successfully move the correct files from /tmp to their designated directories

and to send an alert to Slack when it detected a file. This would be tested

by placing files within the /tmp folder, checking if an alert was sent, and if

the files had been moved into the correct folders.

 44

Chapter 4 Results

This section of the project will highlight the findings and results of the

testing completed in Chapter 3, where each feature was tested using

functional testing to determine if it was viable. The criteria for success for

each feature was that it could successfully detect if a rule violation had

occurred and successfully report it to the command node. However, the

success criteria for the command node were that it could successfully

detect when an alert file was located inside its /tmp directory and move it

into the correct location then send an alert to Slack.

4.1 SSH Testing

When testing if the SSH monitoring was working, the results showed that

the software successfully detected when a user had connected to the

machine. Fulfilling one of the project objectives in the introduction and

MoSCoW analysis. This is evidenced by the log files showing the

connection to the host from the IP 192.168.190.128. The full log of this can

be seen below in Figure 31.

Figure 31- Logs Showing SSH Connection

4.2 File Monitoring Testing

When testing the file/folder monitoring, the testing was split into two main

sections. File testing and folder testing. Both sections were tested using

 45

the nano command and the cat command. The results showed that the file

monitoring worked correctly and was successfully detected when files were

modified and accessed. Evidence of this can be seen in the logs below in

figures 32 and 33, which show that the IDS detected the access and

modifications. However, the folder testing revealed that the software did

not successfully detect the folder's content being accessed or modified,

revealing a logic bug in the software and a limitation of the os.stat

command.

Figure 32- Log Files Showing Evidence of Nano

Figure 33- Log Files Showing Evidence of Cat

4.3 Command Node Testing

When testing, the command node files were placed into the /tmp folder,

and the command node would need to determine if a file was an alert and

then move the file into the designated directory and send a slack alert to

be considered a success. During the testing of the agent nodes, files were

uploaded to s3 and then downloaded into the /tmp folder of the command

node. Once this happened, the command node successfully determined

what files were alerted, transferred them to their designated directories,

and sent a Slack alert. This is evidenced by the log file below in Figure 34

and the Slack alert in Figure 35.

 46

Figure 34- Log File Showing Evidence of Successful File Detection and Alerts

Figure 35- Image of Slack Alert Sent by Command

 47

Chapter 5 Discussion

This chapter of the project aims to evaluate and discuss the methods and

results of the project. Then, they will be compared to the project's aims and

objectives, highlighting the positives and negatives that the project faced

and discussing further where the project had shortcomings. This section

will further discuss how the project could have been improved in future

work.

5.1 Project Aims and Objectives

This section of the discussion aims to evaluate how the project aims and

objectives were met throughout the project and discuss any shortcomings,

highlighting the issues that caused these shortcomings. As mentioned

previously, the aims and objectives of the project were as follows:

• This project aims to research, develop, and evaluate the

effectiveness of a system capable of the detection and remediation

of threats on remote servers. Within the aim of the project, there

have been three key objectives identified.

• The first objective is that a method of detecting anomalies from

observing the server will be researched and implemented.

• The second is that appropriate and automated remediation and

alerts for detected threats will be implemented, allowing the system

to run without user interaction.

• The third objective will be to evaluate the effectiveness and

accuracy of the project, reporting on how successful the project was.

During testing for the intrusion detection system, the software successfully

detected SSH connections and modifications to files; however, the

software failed to detect modifications and access to files within the

 48

monitored folders. This presents a software limitation that failed to meet

the project's aims of successfully detecting threats on remote servers. After

the project was completed, the code was reviewed, and it was discovered

that there was a logic bug within the folder monitoring section of the code.

The logic bug could have been fixed with further work on the project, but

this was not possible due to the project's time limitations.

The project's second objective was that there would be automated steps of

remediation and alerting that would allow the software to run without

interaction. This objective was mostly met with Slack alerts; however, the

project failed to take preventative measures. This highlighted an issue in

the software's design: using log analysis. When using log analysis, the IDS

no longer becomes a real-time monitoring system and cannot detect

threats that are currently happening; therefore, it cannot prevent the

attacks. This issue was highlighted in the project's literature review by

authors Svacina et al. (2020) who described log analysis as a “post

mortem” method of monitoring. This monitoring method directly contradicts

the proactive purpose of IDPS and was a major issue for the project. If

further work on the project were to be done, then a different monitoring

technique would be implemented, such as process monitoring, which

would allow the system to become a real-time system, allowing

preventative actions to be taken. This issue was further elaborated during

the project because pattern-based detection was used instead of anomaly-

based detection. This meant that the first objective of the project was not

fully achieved. The difference between anomaly-based detection and

pattern-based detection is that anomaly-based detection relies on systems

such as machine learning to set a baseline and detect if anything has

changed; however, for this project the decision to use logs were used

instead, contradicting the aims of the project and limiting the capabilities of

the IDS.

 49

5.2 MoSCoW Analysis

While the project had the overall aims and objectives, there was also a set

of secondary objectives identified through a MoSCoW analysis done with

the project client. The “Could Haves” and “Must Haves” of the projects were

objectives that the client discussed and were used to shape the features

included within the software. The full MoSCoW analysis can be seen below

in Table 4 and Table 5.

Table 4- Description of the “Must Haves” From the Client

Must Haves

Description

Develop an Intrusion

Detection System

Develop a functional Intrusion Detection system.

Compatibility with

Ubuntu Linux

Allow the IDS to be fully compatible with the

Ubuntu operating system.

Host Based System IDS must be a host-based intrusion detection

system with an agent per virtual machine.

Network

Authentication

Detection

Agents must be able to detect remote

connections to the machine.

File modification

Detection

Agents must be able to detect when files and

folders are modified.

Table 5- Description of the “Could Haves” From the Client

Could Haves Description

Simple Alerts A Slack alert bot that could alert the security

team of any intrusions.

Simple Deployment The ability to deploy the software through the

use of simple scripts

Minimum Ports The client desires the IDS to use as few ports as

possible for the system to function.

 50

Central

Management

System

A central “command” system that could be used

to monitor the IDS agents and handle alerts.

As shown in Table 4, the "Must Haves" of the project are as follows: The

objectives set out by the client were required for the project to succeed. As

discussed before, the project failed to detect when the contents of folders

were modified, which goes against one of the "must haves" of the project.

However, all other secondary objectives of the project were successful,

including the project's optional "could haves". The software was fully

compatible with Ubuntu Linux, as evidenced by the Ubuntu-focused file

structuring. The project was also a HIDS-based system with a central

management system used to send simple Slack alerts, fulfilling two

optional objectives. The project was also simple to deploy, requiring the

user to run the script as the software had an auto-setup feature for files

and folders. It also contained a configuration file so that each agent node

could be updated by modifying the config.json file, assisting ease of use

and allowing flexibility within each node. However, a downside of this

method is that if different machines used different configurations, an array

of config files would need to be made depending on each machine's

requirements. Another highlight of the software was the use of a minimal

port design. The software was designed so that only two ports would be

required to be opened for the software to be functional—port 22 For SCP

and port 80 for AWS. However, if the client did not wish to use AWS, they

could close port 80 on the agent nodes, and the software would still be

functional due to the redundancy of AWS and SCP.

5.3 Data Transfer Redundancy

When designing the “commandConnection" function, AWS and SCP were

implemented into the code. This would allow the software to transfer the

alert file through either S3 or SCP. The SCP method allows data to be sent

quickly through local networks easily; however, it has the downside of

scalability and difficulty setting up. While testing the software, an issue was

 51

that when the software would send data through SCP, the software would

require a password to be entered. This would go against the project's

objectives of no user interaction with the software. The method of mitigation

that would be implemented for this would be for SSH Keys to be set up in

the agent nodes. However, this has the downside of complicating the setup

of the software and can present security integrity issues, such as the

possibility for the keys to be stolen if an attack occurred, which can be a

major issue when it comes to scalability and goes against the “could have”

objective of simple deployment.

AWS was implemented into the “commandConnection” function. Using

AWS would overcome the issues plaguing the SCP method of data

transfer. AWS allowed the project to be scalable due to the elasticity of

cloud services. AWS also allows users to easily move files worldwide rather

than to a local network. A downside of S3, however, is the cost of storage.

AWS can be a low-cost solution with minimal setup for developers, but the

costs can quickly rise as the storage capacity goes up and the data

retrieved goes up. The default cost per GB of data stored is 0.023$ per

month. (AWS, 2025). To support offsetting storage costs, a method of

deleting the data once downloaded was implemented. This would minimise

storage. Keeping costs low. However, this has the downside of keeping the

stored alerts on a local machine running the command node, an option that

may not be viable for some users.

Using both AWS and SCP allows the system to have a redundant data

transfer method. Although this is not one of the project's objectives,

redundancy allows the software to keep alerting if something has gone

wrong with AWS of SCP and positively impacts the project.

5.4 Evaluating the Testing Methodology

While the use of manual testing allowed a greater understanding of how

the software functioned, the use of functional testing presented issues

throughout the project. One such issue is that minor bugs would happen

 52

and go unnoticed due to the functional software. This presented an issue

within the project where minor bugs would go unnoticed after the feature

was complete and, due to the testing methods, would not be discovered

later. One example of this is the “ip_address” variable throughout the

project. The variable was used as the SCP command node address, and

the IP address told the command node where the file came from in the file

name. Instead, two variables should have been named “scp_ip_address”

and “source_address”. This issue was not identified until after the project

was completed due to functional testing and if other testing methods were

used, such as unit testing, where components are tested in isolation. This

issue would likely not be present in the final product.

5.5 Future Work

While the project was a success, further work is needed to polish the

software and simplify and improve methods within the software. One such

example of this is the config.json file. The file allowed the file monitoring to

be configured by the user to state what files and folders they would like to

be monitored. However, this file could have been improved to allow other

features to be configured. With modification to the SSH monitoring function,

the file could easily allow the user to specify if they would like to monitor

only SSH or if they would like to monitor other features that are stored in

the auth.log, such as FTP and Sudo events. Another modification to the

software would be to allow features to be turned on and off if they were not

needed, helping to save system resources. This is another software feature

that could be implemented within the config.json.

Furthermore, improvements to anomaly-based detection could be

implemented, such as ML classifiers, process monitoring, and network

analysis. These systems support the IDS and allow it to become a more

real-time application, further allowing preventative methods to be added to

the project. This would help support the project aims and objectives more

effectively; however, it would come with individual trade-offs, such as

potentially high false positive rates and network congestion. However, it

 53

would be up to the end user to decide if the trade-offs are worth it for a

higher detection rate and implementation of IPS into the software.

 54

Chapter 6 Conclusion

This project set out to research, develop, and evaluate the effectiveness of

a system capable of the detection and remediation of threats on remote

servers. The project started with a literature review detailing core principles

of Linux security, such as the Principle of Least Privilege (PoLP) and

protection and detection.

Following this, there was a discussion regarding the techniques associated

with Linux security, which included log analysis, network monitoring and

intrusion detection and prevention systems (IDPS). The project was guided

by the general techniques found and discussed in the literature review to

provide a baseline for the project before developing secondary objectives.

The objectives were set out using a MoSCoW analysis based on talks with

the client. Afterwards, an intrusion detection system was created using an

Agile development methodology to monitor files for changes and access. It

also could detect remote SSH access on the machine before reporting it to

a central command system. This would then send alerts to a Slack bot.

Furthermore, the IDS also had AWS integration to allow a variety of

possibilities for data transfer to assist with scalability for the project and to

help simplify the software deployment. The IDS was then tested and

evaluated using manual functional testing, which would reveal that the

folder monitoring feature was not functional, though the SSH and file

monitoring were.

Finally, the system focused on detection and alerting, with automated

remediation not being implemented due to the design options such as the

use of log analysis making it not real time and due to this, preventative

actions could not be taken.

 55

List of References

Academy, E. (2023) ‘What is the purpose of the “/etc” directory in the
Linux file system?’, EITCA Academy, 5 August. Available at:
https://eitca.org/cybersecurity/eitc-is-lsa-linux-system-administration/linux-
filesystem/filesystem-layout-overview/examination-review-filesystem-
layout-overview/what-is-the-purpose-of-the-etc-directory-in-the-linux-file-
system/ (Accessed: 23 April 2025).

Al-Muntaser, B., Mohamed, M.A. and Tuama, A.Y. (2023) ‘Real-Time
Intrusion Detection of Insider Threats in Industrial Control System
Workstations Through File Integrity Monitoring’, International Journal of
Advanced Computer Science and Applications, 14(6). Available at:
https://doi.org/10.14569/IJACSA.2023.0140636.

Ban, T. et al. (2021) ‘Combat Security Alert Fatigue with AI-Assisted
Techniques’, in Cyber Security Experimentation and Test Workshop.
CSET ’21: Cyber Security Experimentation and Test Workshop, Virtual
CA USA: ACM, pp. 9–16. Available at:
https://doi.org/10.1145/3474718.3474723.

Beizer, B. (1995) Black-box testing: techniques for functional software
and systems testing. USA: John Wiley & Sons, Inc.

Bhushan, B., Sahoo, G. and Rai, A.K. (2017) ‘Man-in-the-middle attack in
wireless and computer networking — A review’, in 2017 3rd International
Conference on Advances in Computing,Communication & Automation
(ICACCA) (Fall). 2017 3rd International Conference on Advances in
Computing,Communication & Automation (ICACCA) (Fall), pp. 1–6.
Available at: https://doi.org/10.1109/ICACCAF.2017.8344724.

Depren, O. et al. (2005) ‘An intelligent intrusion detection system (IDS) for
anomaly and misuse detection in computer networks’, Expert Systems
with Applications, 29(4), pp. 713–722. Available at:
https://doi.org/10.1016/j.eswa.2005.05.002.

Desmond, B. et al. (2008) Active Directory: Designing, Deploying, and
Running Active Directory. O’Reilly Media, Inc.

Despa, M.L. (2014) ‘Comparative study on software development
methodologies.’, Database systems journal, 5(3).

Ell, M. (2024) Cyber security breaches survey 2024, GOV.UK. Available
at: https://www.gov.uk/government/statistics/cyber-security-breaches-
survey-2024/cyber-security-breaches-survey-2024 (Accessed: 3 March
2025).

Foulds, I. (2023) Implementing Least-Privilege Administrative Models.
Available at: https://learn.microsoft.com/en-us/windows-server/identity/ad-
ds/plan/security-best-practices/implementing-least-privilege-
administrative-models (Accessed: 24 March 2025).

 56

Fuchsberger, A. (2005) ‘Intrusion Detection Systems and Intrusion
Prevention Systems’, Information Security Technical Report, 10(3), pp.
134–139. Available at: https://doi.org/10.1016/j.istr.2005.08.001.

George, D.A.S. (2024) ‘When Trust Fails: Examining Systemic Risk in the
Digital Economy from the 2024 CrowdStrike Outage’, Partners Universal
Multidisciplinary Research Journal, 1(2), pp. 134–152. Available at:
https://doi.org/10.5281/zenodo.12828222.

Isaiah, A. (2025) Monitoring Linux Authentication Logs: A Practical Guide
| Better Stack Community, Better Stack. Available at:
https://betterstack.com/community/guides/logging/monitoring-linux-auth-
logs/ (Accessed: 11 April 2025).

Jero, S. et al. (2021) ‘Practical Principle of Least Privilege for Secure
Embedded Systems’, in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 1–13. Available at:
https://doi.org/10.1109/RTAS52030.2021.00009.

Kenlon, S. (2021) What is a config file? | Opensource.com. Available at:
https://opensource.com/article/21/6/what-config-files (Accessed: 23 April
2025).

Kenlon, S. (2022) Linux superuser access, explained, Red Hat. Available
at: https://www.redhat.com/en/blog/linux-superuser-access (Accessed: 23
March 2025).

Kent, K. and Souppaya, M.P. (2006) Guide to computer security log
management. 0 edn. NIST SP 800-92. Gaithersburg, MD: National
Institute of Standards and Technology, p. NIST SP 800-92. Available at:
https://doi.org/10.6028/NIST.SP.800-92.

Kim, G.H. and Spafford, E.H. (1994) ‘The design and implementation of
tripwire: a file system integrity checker’, in Proceedings of the 2nd ACM
Conference on Computer and communications security - CCS ’94. the
2nd ACM Conference, Fairfax, Virginia, United States: ACM Press, pp.
18–29. Available at: https://doi.org/10.1145/191177.191183.

Kumar, N., Angral, S. and Sharma, R. (2014) ‘Integrating Intrusion
Detection System with Network monitoring’, 4(5).

Loscocco, P.A. et al. (2007) ‘Linux kernel integrity measurement using
contextual inspection’, in Proceedings of the 2007 ACM workshop on
Scalable trusted computing. CCS07: 14th ACM Conference on Computer
and Communications Security 2007, Alexandria Virginia USA: ACM, pp.
21–29. Available at: https://doi.org/10.1145/1314354.1314362.

Lundh, F. (2001) Python Standard Library. O’Reilly Media, Inc.

Mosteiro-Sanchez, A. et al. (2020) ‘Securing IIoT using Defence-in-
Depth: Towards an End-to-End secure Industry 4.0’, Journal of

 57

Manufacturing Systems, 57, pp. 367–378. Available at:
https://doi.org/10.1016/j.jmsy.2020.10.011.

Motiee, S., Hawkey, K. and Beznosov, K. (2010) ‘Do windows users
follow the principle of least privilege?: investigating user account control
practices’, in Proceedings of the Sixth Symposium on Usable Privacy and
Security. SOUPS ’10: Symposium on Usable Privacy and Security,
Redmond Washington USA: ACM, pp. 1–13. Available at:
https://doi.org/10.1145/1837110.1837112.

Nano - Community Help Wiki (no date) Ubuntu. Available at:
https://help.ubuntu.com/community/Nano (Accessed: 25 April 2025).

Nittono, H. et al. (2012) ‘The Power of Kawaii: Viewing Cute Images
Promotes a Careful Behavior and Narrows Attentional Focus’, PLoS
ONE. Edited by K. Paterson, 7(9), p. e46362. Available at:
https://doi.org/10.1371/journal.pone.0046362.

Radif, M.J. (2018) ‘Vulnerability and Exploitation of Digital Certificates’, in
2018 Al-Mansour International Conference on New Trends in Computing,
Communication, and Information Technology (NTCCIT). 2018 Al-
Mansour International Conference on New Trends in Computing,
Communication, and Information Technology (NTCCIT), pp. 88–92.
Available at: https://doi.org/10.1109/NTCCIT.2018.8681179.

Sánchez, A.R., Alvarado-Nava, O. and Martínez, F.J.Z. (2012) ‘Network
monitoring system based on an FPGA with Linux’, in 2012 Technologies
Applied to Electronics Teaching (TAEE). 2012 Technologies Applied to
Electronics Teaching (TAEE), pp. 232–236. Available at:
https://doi.org/10.1109/TAEE.2012.6235441.

Sewak, M., Sahay, S.K. and Rathore, H. (2023) ‘Deep Reinforcement
Learning in the Advanced Cybersecurity Threat Detection and Protection’,
Information Systems Frontiers, 25(2), pp. 589–611. Available at:
https://doi.org/10.1007/s10796-022-10333-x.

Sharma, sagr (2024) The /tmp directory in Linux: What You Should
Know, linuxhandbook. Available at: https://linuxhandbook.com/tmp-
directory/ (Accessed: 13 April 2025).

Svacina, J. et al. (2020) ‘On Vulnerability and Security Log analysis: A
Systematic Literature Review on Recent Trends’, in Proceedings of the
International Conference on Research in Adaptive and Convergent
Systems. RACS ’20: International Conference on Research in Adaptive
and Convergent Systems, Gwangju Republic of Korea: ACM, pp. 175–
180. Available at: https://doi.org/10.1145/3400286.3418261.

Svoboda, J., Ghafir, I. and Prenosil, V. (2015) ‘Network Monitoring
Approaches: An Overview’, International Journal of Advances in
Computer Networks and Its Security– IJCNS, 5, pp. 88–93.

 58

Tidy, J. (2024) CrowdStrike IT outage affected 8.5 million Windows
devices, Microsoft says, BBC News. Available at:
https://www.bbc.com/news/articles/cpe3zgznwjno (Accessed: 3 March
2025).

Verma, P. (2023) 10 Best Practices for Logging in Python | Better Stack
Community, Better Stack. Available at:
https://betterstack.com/community/guides/logging/python/python-logging-
best-practices/ (Accessed: 18 April 2025).

Wang, S.-Y. and Chang, J.-C. (2022) ‘Design and implementation of an
intrusion detection system by using Extended BPF in the Linux kernel’,
Journal of Network and Computer Applications, 198, p. 103283. Available
at: https://doi.org/10.1016/j.jnca.2021.103283.

Wang, X. et al. (2024) 'Combating alert fatigue with AlertPro: Context-
aware alert prioritisation using reinforcement learning for multi-step attack
detection', Computers & Security, 137, p. 103583. Available at:
https://doi.org/10.1016/j.cose.2023.103583.

Wang, Z.Q. and Zhang, D.K. (2012) ‘HIDS and NIDS Hybrid Intrusion
Detection System Model Design’, Advanced Engineering Forum, 6–7, pp.
991–994. Available at: https://doi.org/10.4028/www.scientific.net/aef.6-
7.991.

 59

Appendices

Appendix A- Complete Node Code

import os

import datetime

import time

from dotenv import load_dotenv

import threading

import boto3

from boto3 import client

import logging

import subprocess

import json

load_dotenv()

##code below is resposible for setting up the logging system

logger = logging.getLogger(__name__)

logger.setLevel(logging.INFO)

handler = logging.handlers.RotatingFileHandler(

 "/etc/NinjaEye/logs/log.txt", maxBytes=1000000, backupCount=10

##rolling logs to save space

)

formatter = logging.Formatter("%(asctime)s - %(name)s -

%(levelname)s - %(message)s")

handler.setFormatter(formatter)

if not logger.hasHandlers():

 logger.addHandler(handler)

print(r"""

 60

.--.

| |

| |

| ________ ___ ________ ___ ________ |

| |\ ___ \|\ \|\ ___ \ |\ \|\ __ \ |

| \ \ \\ \ \ \ \ \ \\ \ \ \ \ \ \ \|\ \ |

| \ \ \\ \ \ \ \ \ \\ \ \ __ \ \ \ \ __ \ |

| \ \ \\ \ \ \ \ \ \\ \ \|\ _\ \ \ \ \ \ |

| \ __\\ __\ __\ __\\ __\ ________\ __\ __\ |

| \|__| \|__|\|__|\|__| \|__|\|________|\|__|\|__| |

| |

| |

| |

| _______ ___ ___ _______ |

| |\ ___ \ |\ \ / /|\ ___ \ |

| \ \ __/| \ \ \/ / | \ __/| |

| \ \ _|/__ \ \ / / \ \ _|/__ |

| \ \ _|\ \ \/ / / \ \ _|\ \ |

| \ _________/ / / \ _______\ |

| \|_______|___/ / \|_______| |

| \|___|/ |

| V1.0 |

| Leon Anderson |

'--'

""")

def configsetup(path="/home/ubuntu/Desktop/config.json"):

 ##loads configuration json to assist file monitoring

 try:

 with open(path, "r") as file:

 config = json.load(file)

 61

 logger.info("config.json loaded sucessfuly")

 return config

 except Exception as e:

 logger.error(f"Failed to load configuration: {e}")

 exit(1)

config = configsetup()

def firstsetup():

 ## function that is responsible for setting up the directories and files

needed for the program to run

 folderpath = "/etc/NinjaEye/"

 folders = ["logs", "logs/alerts", "file_compare"]

 file_paths = ["logs/log.txt"]

 ##creates the folders and files needed for the program to run

 try:

 for folder_name in folders:

 folder_path = os.path.join(folderpath, folder_name)

 os.makedirs(folder_path, exist_ok=True)

 logger.info(f"Created directory: {folder_path}")

 for file_name in file_paths:

 file_path = os.path.join(folderpath, file_name)

 os.makedirs(os.path.dirname(file_path), exist_ok=True)

 if not os.path.exists(file_path):

 logger.info(f"Creating file: {file_path}")

 with open(file_path, 'w') as f:

 pass

 62

 print(f"Directories and files set up successfully in {folderpath}.")

 except PermissionError:

 print("Permission denied: Please run the script with elevated

privileges.")

 exit(1)

def get_env_variable():

 ## function that loads the enviroment variables from the .env file

needed for scp

 try:

 ip_address = os.getenv('IP_ADDRESS')

 ssh_username = os.getenv('SSH_USERNAME')

 logger.info("loaded enviroment variables")

 return ip_address, ssh_username

 except Exception as e:

 logger.error(f"An error occurred when loading the enviroment

variables: {e}")

 return None

def commandConnection(ip_address, ssh_username, data,

filereason):

 ##main function used for connecting to command node using scp

and S3

 currentTime = datetime.datetime.now().strftime("%Y-%m-%d_%H-

%M-%S")

 filename = f"NINJAEYE:{ip_address}:{currentTime}:{filereason}"

 filepath = f"/etc/NinjaEye/logs/alerts/{filename}"

 ## Write "data" to file

 with open(filepath, "w") as f:

 63

 f.write(data)

 logger.info(f"Created alert: {filepath}")

 upload_to_s3(filepath) ##uploads to aws

 subprocess.run(f"scp {filepath} {ssh_username}@{ip_address}:/tmp",

shell=True)

 logger.info(f"alert sent to {ssh_username}@{ip_address}:/tmp

through scp")

 return

def sshLog(): ## gathers ssh logs and places them into a compare file

 sshCmd = "grep sshd /var/log/auth.log >

/etc/NinjaEye/logs/ssh.txt"

 subprocess.run(sshCmd, shell=True)

 logger.info(f"ssh log created using command: {sshCmd}")

 sshCompare() ## calls the ssh compare function to compare the

logs

def sshCompare(): ## comparison function of ssh logs to predefined

ssh log

 filereason = "unauthorizedSSH"

 while True:

 sshCmd = "grep sshd /var/log/auth.log >

/etc/NinjaEye/logs/sshCompare.txt"

 subprocess.run(sshCmd, shell=True)

 logger.info(f"ssh log created using command: {sshCmd}")

 afterLog = open("/etc/NinjaEye/logs/sshCompare.txt")

 beforeLog = open("/etc/NinjaEye/logs/ssh.txt")

 logger.info("ssh comparison started")

 64

 beforeLog_data = beforeLog.readlines()

 afterLog_data = afterLog.readlines()

 before_set = set(beforeLog_data)

 after_set = set(afterLog_data)

 differences = after_set - before_set ##diffrences between the two

files

 if differences:

 alert_data = ""

 for line in differences:

 logger.warning(f"ALERT! {line.strip()}")

 alert_data += line ##combines the alert data

 ##sends information to command

 commandConnection(ip_address, ssh_username, alert_data,

filereason) ##call helped function too parse information to command

 updatedLog = open("/etc/NinjaEye/logs/ssh.txt", "w")

 updatedLog.writelines(afterLog_data)

 updatedLog.close()

 logger.info("ssh log /etc/NinjaEye/logs/ssh.txt updated with new

data")

 else:

 logger.info("No differences found in ssh logs.")

 afterLog.close()

 beforeLog.close()

 time.sleep(time_interval) ##checks after time interval set in

config.json

 65

def fileCompare(path, label, time_interval):

 ##function responsible for comparing files/folders using os.stat

 filereason = "unauthorizedAccess"

 beforefile = f"/etc/NinjaEye/file_compare/{label}_before.txt"

 afterfile = f"/etc/NinjaEye/file_compare/{label}_after.txt"

 open(beforefile, "a").close()

 open(afterfile, "a").close()

 test = os.stat(path) ## the file that is being accessed to test the

function using nano

 logger.info("files are being checked using stat")

 with open(beforefile, "w") as file:

 file.write(f"{test.st_atime} : {test.st_mtime} \n")

 logger.info(f"{beforefile} modified wth updated timestamp")

 while True:

 monitoredfile = os.stat(path) ## the file that is being accessed to

test the function using nano

 logger.info("files are being checked using stat")

 with open(afterfile, "w") as file:

 file.write(f"{monitoredfile.st_atime} : {monitoredfile.st_mtime}

\n")

 logger.info(f"{afterfile} modified with updated timestamps")

 afterLog = open(afterfile) ## the file that has the current time the

file was accessed

 beforeLog = open(beforefile)

 66

 beforeLog_data = beforeLog.readlines()

 afterLog_data = afterLog.readlines()

 before_set = set(beforeLog_data)

 after_set = set(afterLog_data)

 differences = after_set - before_set

 if differences:

 alert_data = ""

 for line in differences:

 logger.warning(f"ALERT! {line.strip()}")

 alert_data += line #combines the alert data

 ##sends information to command

 commandConnection(ip_address, ssh_username, alert_data,

filereason) ##call helper function too parse information to command

 else:

 logger.info("No differences found in file compare.")

 afterLog.close()

 beforeLog.close()

 with open(beforefile, "w") as file:

 file.write(f"{monitoredfile.st_atime} : {monitoredfile.st_mtime}

\n")

 logger.info(f"{beforefile} modified with updated timestamps")

 time.sleep(time_interval)

 67

def upload_to_s3(file_name, object_name=None): ##Modified code

from AWS S3 Documentation: Code examples for Amazon S3 using

AWS SDKs - Amazon Simple Storage Service (no date). Available at:

https://docs.aws.amazon.com/AmazonS3/latest/API/service_code_exa

mples_s3.html (Accessed: 02 April 2025).

##function that uploads the alert file to S3 bucket using boto3

 Access_Key = os.getenv('AccessKey')

 Secret_Key = os.getenv('SecretAccessKey')

 BUCKET_NAME = os.getenv('BUCKET_NAME')

 REGION = os.getenv('REGION')

 if object_name is None:

 object_name = os.path.basename(file_name)

 # Initialize S3 client

 logger.info("Initializing S3 client")

 s3 = boto3.client(

 's3',

 aws_access_key_id=Access_Key,

 aws_secret_access_key=Secret_Key,

 region_name=REGION

)

 try:

 logger.info(f"Uploading {file_name} to s3")

 s3.upload_file(file_name, BUCKET_NAME, object_name)

 return True

 except FileNotFoundError:

 print(" File not found")

 logger.error("File not found")

 68

 return False

 except Exception as e:

 logger.error(f"Error uploading file: {e}")

 return False

if __name__ == "__main__":

 firstsetup()

 ip_address, ssh_username = get_env_variable()

 sshThread = threading.Thread(target=sshLog, daemon=True) #

Create a thread for the sshCompare function

 sshThread.start() ## Start the thread

 time_interval = config["monitored_files"]["time_interval"]

 for x in config["monitored_files"]["file_paths"]:

 label = x["filename"]

 path = x["filepath"]

 fileThread = threading.Thread(target=fileCompare, args=(path,

label, time_interval), daemon=True) # Create a thread for each name

 fileThread.start() ## Start the thread

 sshThread.join() ##waits for both threads to finish before exiting the

program.

 fileThread.join()

 69

Appendix B- Complete Command Code

import logging.handlers

import os

import time

import shutil

from dotenv import load_dotenv

from slack_sdk import WebClient

from slack_sdk.errors import SlackApiError

import requests

import boto3

from boto3 import client

import threading

load_dotenv()

##code below is resposible for setting up the logging system

logger = logging.getLogger(__name__)

logger.setLevel(logging.INFO)

handler = logging.handlers.RotatingFileHandler(

 "/etc/NinjaEye/logs/log.txt", maxBytes=1000000, backupCount=10

##rolling logs to save space

)

formatter = logging.Formatter("%(asctime)s - %(name)s -

%(levelname)s - %(message)s")

handler.setFormatter(formatter)

if not logger.hasHandlers():

 logger.addHandler(handler)

print(r"""

.--.

| |

| |

 70

| ________ ___ ________ ___ ________ |

| |\ ___ \|\ \|\ ___ \ |\ \|\ __ \ |

| \ \ \\ \ \ \ \ \ \\ \ \ \ \ \ \ \|\ \ |

| \ \ \\ \ \ \ \ \ \\ \ \ __ \ \ \ \ __ \ |

| \ \ \\ \ \ \ \ \ \\ \ \|\ _\ \ \ \ \ \ |

| \ __\\ __\ __\ __\\ __\ ________\ __\ __\ |

| \|__| \|__|\|__|\|__| \|__|\|________|\|__|\|__| |

| |

| |

| |

| _______ ___ ___ _______ |

| |\ ___ \ |\ \ / /|\ ___ \ |

| \ \ __/| \ \ \/ / | \ __/| |

| \ \ _|/__ \ \ / / \ \ _|/__ |

| \ \ _|\ \ \/ / / \ \ _|\ \ |

| \ _________/ / / \ _______\ |

| \|_______|___/ / \|_______| |

| \|___|/ |

| V1.0 |

| Leon Anderson |

'--'

""")

def firstsetup():

 ## Setup required directories and files.

 folderpath = "/etc/NinjaEye/"

 folders = ["logs", "logs/alerts"]

 file_paths = ["logs/log.txt"]

 try:

 for folder_name in folders:

 71

 folder_path = os.path.join(folderpath, folder_name)

 os.makedirs(folder_path, exist_ok=True)

 logger.info(f"Created directory: {folder_path}")

 for file_name in file_paths:

 file_path = os.path.join(folderpath, file_name)

 os.makedirs(os.path.dirname(file_path), exist_ok=True)

 if not os.path.exists(file_path):

 logger.info(f"Creating file: {file_path}")

 with open(file_path, 'w') as f:

 pass

 print(f"Directories and files set up successfully in {folderpath}.")

 except PermissionError:

 print("Permission denied: Please run the script with elevated

privileges.")

 exit(1)

def alertmonitoring(): ## Monitors for incoming files in tmp folder and

alerts the user if there is one then stores the file

 CHANNEL_ID = os.getenv('CHANNEL_ID')

 SLACK_BOT_TOKEN = os.getenv('SLACK_BOT_TOKEN')

 folderpath = "/tmp/" ##where files are stored

 ## Code belows splits the file name into sections and stores sets

them to "reason" variable to allow ease of passing in slack

 while True:

 for filename in os.listdir(folderpath):

 if filename.startswith("NINJAEYE"):

 source = os.path.join(folderpath, filename)

 destination = "/etc/NinjaEye/alerts"

 72

 shutil.move(source, destination)

 print(f"ALERT! See {destination}/{filename} for more

information!")

 logger.info(f"Detected alert and moved to

{destination}/{filename}")

 parts = filename.split(':')

 if len(parts) >= 4:

 prefix = parts[0]

 ip_address = parts[1]

 current_time = parts[2]

 filereason = parts[3]

 else:

 prefix = "NINJAEYE"

 ip_address = "Unknown"

 current_time = "Unknown"

 filereason = "Unknown"

 reason = (f"ALERT! A issue has been detected and moved to

{destination}\n"

 f"Prefix: {prefix}\n"

 f"IP Address: {ip_address}\n"

 f"Time: {current_time}\n"

 f"File Reason: {filereason}")

 send_message(CHANNEL_ID, SLACK_BOT_TOKEN,

reason)

 time.sleep(5) ##sleep for performance

def get_cat_image():

 ## Code below helper function resposible for getting a random cat

image from the API and returning the URL to be passed into slack

 73

 logger.info("Attempting to fetch random cat image")

 CAT_API_KEY = os.getenv('CAT_API_KEY')

 CAT_API_URL = os.getenv('CAT_API_URL')

 headers = {"x-api-key": CAT_API_KEY}

 response = requests.get(CAT_API_URL, headers=headers)

 if response.status_code == 200:

 immage_url = response.json()[0]["url"]

 logger.info(f"Fetched cat image URL: {immage_url}")

 return response.json()[0]["url"]

 return None

def send_message(channel, SLACK_BOT_TOKEN, reason):

 #function responsible for sending slack messages.

 logger.info(f"attempting to send message to slack channel")

 client = WebClient(token=SLACK_BOT_TOKEN)

 cat_image_url = get_cat_image()

 if not cat_image_url:

 cat_image_url =

"https://pbs.twimg.com/profile_images/625633822235693056/lNGUneL

X_400x400.jpg" # Fallback image

 logger.info(f"Failed to fetch cat image, using fallback image

{cat_image_url}")

 ##blocks used to format the slack message.

 blocks = [

 {

 "type": "header",

 "text": {

 "type": "plain_text",

 "text": "Alert!",

 "emoji": True

 }

 74

 },

 {

 "type": "section",

 "text": {

 "type": "mrkdwn",

 "text": f"{reason}\n"

 },

 "accessory": {

 "type": "image",

 "image_url": cat_image_url,

 "alt_text": "Random cat image"

 }

 },

]

 try:

 response = client.chat_postMessage(channel=channel,

blocks=blocks, text="NinjaEye Alert!")

 logger.info(f"Message sucesfully sent to slack")

 except SlackApiError as e:

 logger.error(f"Error sending message to slack:

{e.response['error']}")

def monitor_S3(): ##Modified code from AWS S3

Documentation: Code examples for Amazon S3 using AWS SDKs -

Amazon Simple Storage Service (no date). Available at:

https://docs.aws.amazon.com/AmazonS3/latest/API/service_code_exa

mples_s3.html (Accessed: 02 April 2025).

 Access_Key = os.getenv('AccessKey')

 75

 Secret_Key = os.getenv('SecretAccessKey')

 BUCKET_NAME = os.getenv('BUCKET_NAME')

 REGION = os.getenv('REGION')

 ##code itterates over each function in the bucket and downloads it to

the /tmp folder then deletes it to save storage.

 while True:

 try:

 logger.info("Attempting to access S3 bucket")

 client = boto3.client(

 's3',

 aws_access_key_id=Access_Key,

 aws_secret_access_key=Secret_Key,

 region_name=REGION

)

 bucketItems = client.list_objects(

 Bucket=BUCKET_NAME

)

 if 'Contents' not in bucketItems:

 logger.info("No files in bucket")

 else:

 logger.info("Files found on s3 bucket")

 for item in bucketItems['Contents']:

 key = item['Key']

 file_path = os.path.join("/tmp/", key)

 logger.info(f"Downloading {key} to {file_path}")

 client.download_file(BUCKET_NAME, key, file_path)

 76

 client.delete_object(Bucket=BUCKET_NAME, Key=key)

##reccomended to delete the file after download to save space,

however optional and can be removed retention is needed.

 logger.info(f" {key} removed from S3.")

 time.sleep(5) ##sleep for performance

 except client.exceptions.NoSuchBucket:

 logger.error("The specified bucket does not exist.")

 return False

 except client.exceptions.ClientError as e:

 logger.error(f"Client error: {e}")

 return False

 except Exception as e:

 logger.error(f"Error accessing S3 bucket: {e}")

 return False

if __name__ == "__main__":

 firstsetup()

 alertmonitoringThread = threading.Thread(target=alertmonitoring,

daemon=True) ## Create a thread for the alertmonitoring function

 alertmonitoringThread.start() ## Start the thread

 monitor_S3Thread = threading.Thread(target=monitor_S3,

daemon=True) ## Create a thread for the monitor_S3 function

 monitor_S3Thread.start() ## Start the thread

 alertmonitoringThread.join() ## waits for both threads to finish before

exiting the program.

 monitor_S3Thread.join()

